Self-assembly of large-scale gold nanoparticle arrays and their application in SERS
نویسندگان
چکیده
Surface-enhanced Raman scattering is an effective analytical method that has been intensively applied in the field of identification of organic molecules from Raman spectra at very low concentrations. The Raman signal enhancement that makes this method attractive is usually ascribed to the noble metal nanoparticle (NMNP) arrays which can extremely amplify the electromagnetic field near NMNP surface when localized surface plasmon resonance (LSPR) mode is excited. In this work, we report a simple, facile, and room-temperature method to fabricate large-scale, uniform gold nanoparticle (GNP) arrays on ITO/glass as SERS substrates using a promoted self-assembly deposition technique. The results show that the deposition density of GNPs on ITO/glass surface increases with prolonging deposition time, and nanochain-like aggregates appear for a relatively longer deposition time. It is also shown that these films with relatively higher deposition density have tremendous potential for wideband absorption in the visible range and exhibit two LSPR peaks in the extinction spectra because the electrons simultaneously oscillate along the nanochain at the transverse and the longitudinal directions. The SERS enhancement activity of these GNP arrays was determined using 10-6 M Rhodamine 6G as the Raman probe molecules. A SERS enhancement factor as large as approximately 6.76 × 106 can be obtained at 1,363 cm-1 Raman shift for the highest deposition density film due to the strong plasmon coupling effect between neighboring particles.
منابع مشابه
Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl.
Large scale and well-ordered gold nanoparticle superlattices were fabricated by self-assembly as an active substrate for surface-enhanced Raman scattering (SERS) that can quantitatively detect carbaryl with a detection limit of 1 ppm. These fabricated superlattices with a dimension of several hundred micrometers exhibited high, reproducible SERS activity.
متن کاملTwo-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications.
Nanoparticles were called "artificial atoms" about two decades ago due to their ability to organize into regular lattices or supracrystals. Their self-assembly into free-standing, two-dimensional (2D) nanoparticle arrays enables the generation of 2D metamaterials for novel applications in sensing, nanophotonics and energy fields. However, their controlled fabrication is nontrivial due to the co...
متن کاملEngineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly
The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...
متن کاملRapid Synthesis of Monodisperse Au Nanospheres through a Laser Irradiation -Induced Shape Conversion, Self-Assembly and Their Electromagnetic Coupling SERS Enhancement
We develop a facile and effective strategy to prepare monodispersed Au spherical nanoparticles by two steps. Large-scale monocrystalline Au nanooctahedra with uniform size were synthesized by a polyol-route and subsequently Au nanoparticles were transformed from octahedron to spherical shape in a liquid under ambient atmosphere by non-focused laser irradiation in very short time. High monodispe...
متن کاملCalixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials.
Calixarenes are excellent surfactants for enhancing the dispersion and self-assembly of metal nanoparticles into well-defined structures, particularly those with unit length scales in the 10-100 nm size range. Particles within these ensembles are strongly coupled, giving rise to unique collective optical or magnetic properties. The self-assembled nanostructures described in this feature article...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014